Finite-time Blow-up in the Additive Supercritical Stochastic Nonlinear Schrödinger Equation : the Real Noise Case

نویسنده

  • A. DE BOUARD
چکیده

We review some results concerning the apparition of finite time singularities in nonlinear Schrödinger equations with a Gaussian additive noise which is white in time and correlated in space. We then extend the results to the case where the noise is real valued, which is the case in some physical situations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical simulation of focusing stochastic nonlinear Schrödinger equations

In this paper, we numerically investigate nonlinear Schrödinger equations with a stochastic contribution which is of white noise type and acts either as a potential (multiplicative noise) or as a forcing term (additive noise). In the subcritical case, we recover similar results as in the case of the Korteweg–de Vries equation. In the critical or supercritical case, we observe that depending on ...

متن کامل

Blow-up for the Stochastic Nonlinear Schrödinger Equation with Multiplicative Noise

We study the influence of a multiplicative Gaussian noise, white in time and correlated in space, on the blow-up phenomenon in the supercritical nonlinear Schrödinger equation. We prove that any sufficiently regular and localized deterministic initial data gives rise to a solution which blows up in arbitrarily small time with a positive probability.

متن کامل

Stochastic nonlinear Schrödinger equations driven by a fractional noise Well posedness, large deviations and support

We consider stochastic nonlinear Schrödinger equations driven by an additive noise. The noise is fractional in time with Hurst parameter H in (0, 1). It is also colored in space and the space correlation operator is assumed to be nuclear. We study the local well-posedness of the equation. Under adequate assumptions on the initial data, the space correlations of the noise and for some saturated ...

متن کامل

Finite time blow up of solutions of the Kirchhoff-type equation with variable exponents

In this work, we investigate the following Kirchhoff-type equation with variable exponent nonlinearities u_{tt}-M(‖∇u‖²)△u+|u_{t}|^{p(x)-2}u_{t}=|u|^{q(x)-2}u. We proved the blow up of solutions in finite time by using modified energy functional method.

متن کامل

Numerical resolution of stochastic focusing NLS equations

In this note, we numerically investigate a stochastic nonlinear Schrödinger equation derived as a perturbation of the deterministic NLS equation. The classical NLS equation with focusing nonlinearity of power law type is perturbed by a random term ; it is a strong perturbation since we consider a space-time white noise. It acts either as a forcing term (additive noise) or as a potential (multip...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008